|
|
@@ -3,14 +3,15 @@ import torch
|
|
|
|
from prototorch.modules.prototypes import Prototypes1D
|
|
|
|
from prototorch.modules.prototypes import Prototypes1D
|
|
|
|
from prototorch.functions.distances import tangent_distance, euclidean_distance_matrix
|
|
|
|
from prototorch.functions.distances import tangent_distance, euclidean_distance_matrix
|
|
|
|
from prototorch.functions.normalization import orthogonalization
|
|
|
|
from prototorch.functions.normalization import orthogonalization
|
|
|
|
from prototorch.functions.helper import _check_shapes,_int_and_mixed_shape
|
|
|
|
from prototorch.functions.helper import _check_shapes, _int_and_mixed_shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GTLVQ(nn.Module):
|
|
|
|
class GTLVQ(nn.Module):
|
|
|
|
r""" Generalized Tangent Learning Vector Quantization
|
|
|
|
r""" Generalized Tangent Learning Vector Quantization
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
----------
|
|
|
|
num_classes: int
|
|
|
|
num_classes: int
|
|
|
|
Number of classes of the given classification problem.
|
|
|
|
Number of classes of the given classification problem.
|
|
|
|
|
|
|
|
|
|
|
|
subspace_data: torch.tensor of shape (n_batch,feature_dim,feature_dim)
|
|
|
|
subspace_data: torch.tensor of shape (n_batch,feature_dim,feature_dim)
|
|
|
@@ -19,7 +20,11 @@ class GTLVQ(nn.Module):
|
|
|
|
prototype_data: torch.tensor of shape (n_init_data,feature_dim) (optional)
|
|
|
|
prototype_data: torch.tensor of shape (n_init_data,feature_dim) (optional)
|
|
|
|
prototype data for initalization of the prototypes used in GTLVQ.
|
|
|
|
prototype data for initalization of the prototypes used in GTLVQ.
|
|
|
|
|
|
|
|
|
|
|
|
tangent_projection_type: string
|
|
|
|
subspace_size: int (default=256,optional)
|
|
|
|
|
|
|
|
Subspace dimension of the Projectors. Currently only supported
|
|
|
|
|
|
|
|
with tagnent_projection_type=global.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tangent_projection_type: string
|
|
|
|
Specifies the tangent projection type
|
|
|
|
Specifies the tangent projection type
|
|
|
|
options: local
|
|
|
|
options: local
|
|
|
|
local_proj
|
|
|
|
local_proj
|
|
|
@@ -28,33 +33,33 @@ class GTLVQ(nn.Module):
|
|
|
|
data. Only distances are available
|
|
|
|
data. Only distances are available
|
|
|
|
local_proj: computs tangent distances and returns the projected data
|
|
|
|
local_proj: computs tangent distances and returns the projected data
|
|
|
|
for further use. Be careful: data is repeated by number of prototypes
|
|
|
|
for further use. Be careful: data is repeated by number of prototypes
|
|
|
|
global: Number of subspaces is set to one and every prototypes
|
|
|
|
global: Number of subspaces is set to one and every prototypes
|
|
|
|
uses the same.
|
|
|
|
uses the same.
|
|
|
|
|
|
|
|
|
|
|
|
prototypes_per_class: int (default=2,optional)
|
|
|
|
prototypes_per_class: int (default=2,optional)
|
|
|
|
Number of prototypes per class
|
|
|
|
Number of prototypes per class
|
|
|
|
|
|
|
|
|
|
|
|
feature_dim: int (default=256)
|
|
|
|
feature_dim: int (default=256)
|
|
|
|
Dimensionality of the feature space specified as integer.
|
|
|
|
Dimensionality of the feature space specified as integer.
|
|
|
|
Prototype dimension.
|
|
|
|
Prototype dimension.
|
|
|
|
|
|
|
|
|
|
|
|
Notes
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
-----
|
|
|
|
The GTLVQ [1] is a prototype-based classification learning model. The
|
|
|
|
The GTLVQ [1] is a prototype-based classification learning model. The
|
|
|
|
GTLVQ uses the Tangent-Distances for a local point approximation
|
|
|
|
GTLVQ uses the Tangent-Distances for a local point approximation
|
|
|
|
of an assumed data manifold via prototypial representations.
|
|
|
|
of an assumed data manifold via prototypial representations.
|
|
|
|
|
|
|
|
|
|
|
|
The GTLVQ requires subspace projectors for transforming the data
|
|
|
|
The GTLVQ requires subspace projectors for transforming the data
|
|
|
|
and prototypes into the affine subspace. Every prototype is
|
|
|
|
and prototypes into the affine subspace. Every prototype is
|
|
|
|
equipped with a specific subpspace and represents a point
|
|
|
|
equipped with a specific subpspace and represents a point
|
|
|
|
approximation of the assumed manifold.
|
|
|
|
approximation of the assumed manifold.
|
|
|
|
|
|
|
|
|
|
|
|
In practice prototypes and data are projected on this manifold
|
|
|
|
In practice prototypes and data are projected on this manifold
|
|
|
|
and pairwise euclidean distance computes.
|
|
|
|
and pairwise euclidean distance computes.
|
|
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
----------
|
|
|
|
.. [1] Saralajew, Sascha; Villmann, Thomas: Transfer learning
|
|
|
|
.. [1] Saralajew, Sascha; Villmann, Thomas: Transfer learning
|
|
|
|
in classification based on manifolc. models and its relation
|
|
|
|
in classification based on manifolc. models and its relation
|
|
|
|
to tangent metric learning. In: 2017 International Joint
|
|
|
|
to tangent metric learning. In: 2017 International Joint
|
|
|
|
Conference on Neural Networks (IJCNN).
|
|
|
|
Conference on Neural Networks (IJCNN).
|
|
|
@@ -82,13 +87,9 @@ class GTLVQ(nn.Module):
|
|
|
|
self.tpt = tangent_projection_type
|
|
|
|
self.tpt = tangent_projection_type
|
|
|
|
with torch.no_grad():
|
|
|
|
with torch.no_grad():
|
|
|
|
if self.tpt == 'local' or self.tpt == 'local_proj':
|
|
|
|
if self.tpt == 'local' or self.tpt == 'local_proj':
|
|
|
|
self.subspaces = torch.nn.Parameter(
|
|
|
|
self.init_local_subspace(subspace_data)
|
|
|
|
self.init_local_subspace(
|
|
|
|
|
|
|
|
subspace_data).clone().detach().requires_grad_(True))
|
|
|
|
|
|
|
|
elif self.tpt == 'global':
|
|
|
|
elif self.tpt == 'global':
|
|
|
|
self.subspaces = torch.nn.Parameter(
|
|
|
|
self.init_gobal_subspace(subspace_data, subspace_size)
|
|
|
|
self.init_gobal_subspace(
|
|
|
|
|
|
|
|
subspace_data).clone().detach().requires_grad_(True))
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
self.subspaces = None
|
|
|
|
self.subspaces = None
|
|
|
|
|
|
|
|
|
|
|
@@ -125,13 +126,17 @@ class GTLVQ(nn.Module):
|
|
|
|
def init_gobal_subspace(self, data, num_subspaces):
|
|
|
|
def init_gobal_subspace(self, data, num_subspaces):
|
|
|
|
_, _, v = torch.svd(data)
|
|
|
|
_, _, v = torch.svd(data)
|
|
|
|
subspace = (torch.eye(v.shape[0]) - (v @ v.T)).T
|
|
|
|
subspace = (torch.eye(v.shape[0]) - (v @ v.T)).T
|
|
|
|
return subspace[:, :num_subspaces]
|
|
|
|
subspaces = subspace[:, :num_subspaces]
|
|
|
|
|
|
|
|
self.subspaces = torch.nn.Parameter(
|
|
|
|
|
|
|
|
subspaces).clone().detach().requires_grad_(True)
|
|
|
|
|
|
|
|
|
|
|
|
def init_local_subspace(self, data):
|
|
|
|
def init_local_subspace(self, data):
|
|
|
|
_, _, v = torch.svd(data)
|
|
|
|
_, _, v = torch.svd(data)
|
|
|
|
inital_projector = (torch.eye(v.shape[0]) - (v @ v.T)).T
|
|
|
|
inital_projector = (torch.eye(v.shape[0]) - (v @ v.T)).T
|
|
|
|
return inital_projector.unsqueeze(0).repeat_interleave(
|
|
|
|
subspaces = inital_projector.unsqueeze(0).repeat_interleave(
|
|
|
|
self.num_protos, 0)
|
|
|
|
self.num_protos, 0)
|
|
|
|
|
|
|
|
self.subspaces = torch.nn.Parameter(
|
|
|
|
|
|
|
|
subspaces).clone().detach().requires_grad_(True)
|
|
|
|
|
|
|
|
|
|
|
|
def global_tangent_distances(self, x):
|
|
|
|
def global_tangent_distances(self, x):
|
|
|
|
# Tangent Projection
|
|
|
|
# Tangent Projection
|
|
|
@@ -154,13 +159,11 @@ class GTLVQ(nn.Module):
|
|
|
|
# Origin Author:
|
|
|
|
# Origin Author:
|
|
|
|
|
|
|
|
|
|
|
|
signal_shape, signal_int_shape = _int_and_mixed_shape(signals)
|
|
|
|
signal_shape, signal_int_shape = _int_and_mixed_shape(signals)
|
|
|
|
proto_shape, proto_int_shape = _int_and_mixed_shape(protos)
|
|
|
|
_, proto_int_shape = _int_and_mixed_shape(protos)
|
|
|
|
|
|
|
|
|
|
|
|
# check if the shapes are correct
|
|
|
|
# check if the shapes are correct
|
|
|
|
_check_shapes(signal_int_shape, proto_int_shape)
|
|
|
|
_check_shapes(signal_int_shape, proto_int_shape)
|
|
|
|
|
|
|
|
|
|
|
|
atom_axes = list(range(3, len(signal_int_shape)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Tangent Data Projections
|
|
|
|
# Tangent Data Projections
|
|
|
|
projected_protos = torch.bmm(protos.unsqueeze(1), subspaces).squeeze(1)
|
|
|
|
projected_protos = torch.bmm(protos.unsqueeze(1), subspaces).squeeze(1)
|
|
|
|
data = signals.squeeze(2).permute([1, 0, 2])
|
|
|
|
data = signals.squeeze(2).permute([1, 0, 2])
|
|
|
@@ -170,7 +173,7 @@ class GTLVQ(nn.Module):
|
|
|
|
projected_diff = torch.reshape(
|
|
|
|
projected_diff = torch.reshape(
|
|
|
|
diff, (signal_shape[1], signal_shape[0], signal_shape[2]) +
|
|
|
|
diff, (signal_shape[1], signal_shape[0], signal_shape[2]) +
|
|
|
|
signal_shape[3:])
|
|
|
|
signal_shape[3:])
|
|
|
|
diss = torch.norm(projected_diff,2,dim=-1)
|
|
|
|
diss = torch.norm(projected_diff, 2, dim=-1)
|
|
|
|
return diss.permute([1, 0, 2]).squeeze(-1), projected_data.squeeze(1)
|
|
|
|
return diss.permute([1, 0, 2]).squeeze(-1), projected_data.squeeze(1)
|
|
|
|
|
|
|
|
|
|
|
|
def get_parameters(self):
|
|
|
|
def get_parameters(self):
|
|
|
|