Add small API changes and more test cases
This commit is contained in:
parent
da3b0cc262
commit
1ec7bd261b
@ -1 +1,12 @@
|
||||
"""ProtoTorch package."""
|
||||
|
||||
__version__ = '0.1.1-dev0'
|
||||
|
||||
from prototorch import datasets, functions, modules, utils
|
||||
|
||||
__all__ = [
|
||||
'datasets',
|
||||
'functions',
|
||||
'modules',
|
||||
'utils',
|
||||
]
|
||||
|
@ -1,23 +1,30 @@
|
||||
"""ProtoTorch prototype modules."""
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
|
||||
from prototorch.functions.initializers import get_initializer
|
||||
|
||||
|
||||
class AddPrototypes1D(torch.nn.Module):
|
||||
class Prototypes1D(torch.nn.Module):
|
||||
def __init__(self,
|
||||
prototypes_per_class=1,
|
||||
prototype_distribution=None,
|
||||
prototype_initializer='ones',
|
||||
data=None,
|
||||
dtype=torch.float32,
|
||||
**kwargs):
|
||||
|
||||
# Accept PyTorch tensors, but convert to python lists before processing
|
||||
if torch.is_tensor(prototype_distribution):
|
||||
prototype_distribution = prototype_distribution.tolist()
|
||||
|
||||
if data is None:
|
||||
if 'input_dim' not in kwargs:
|
||||
raise NameError('`input_dim` required if '
|
||||
'no `data` is provided.')
|
||||
if prototype_distribution is not None:
|
||||
if prototype_distribution:
|
||||
nclasses = sum(prototype_distribution)
|
||||
else:
|
||||
if 'nclasses' not in kwargs:
|
||||
@ -26,30 +33,46 @@ class AddPrototypes1D(torch.nn.Module):
|
||||
'provided.')
|
||||
nclasses = kwargs.pop('nclasses')
|
||||
input_dim = kwargs.pop('input_dim')
|
||||
# input_shape = (input_dim, )
|
||||
if prototype_initializer in [
|
||||
'stratified_mean', 'stratified_random'
|
||||
]:
|
||||
warnings.warn(
|
||||
f'`prototype_initializer`: `{prototype_initializer}` '
|
||||
'requires `data`, but `data` is not provided. '
|
||||
'Using randomly generated data instead.')
|
||||
x_train = torch.rand(nclasses, input_dim)
|
||||
y_train = torch.arange(nclasses)
|
||||
data = [x_train, y_train]
|
||||
|
||||
else:
|
||||
x_train, y_train = data
|
||||
x_train = torch.as_tensor(x_train)
|
||||
y_train = torch.as_tensor(y_train)
|
||||
x_train, y_train = data
|
||||
x_train = torch.as_tensor(x_train).type(dtype)
|
||||
y_train = torch.as_tensor(y_train).type(dtype)
|
||||
nclasses = torch.unique(y_train).shape[0]
|
||||
|
||||
assert x_train.ndim == 2
|
||||
|
||||
# Verify input dimension if `input_dim` is provided
|
||||
if 'input_dim' in kwargs:
|
||||
assert kwargs.pop('input_dim') == x_train.shape[1]
|
||||
|
||||
# Verify the number of classes if `nclasses` is provided
|
||||
if 'nclasses' in kwargs:
|
||||
assert nclasses == kwargs.pop('nclasses')
|
||||
|
||||
super().__init__(**kwargs)
|
||||
self.prototypes_per_class = prototypes_per_class
|
||||
|
||||
if not prototype_distribution:
|
||||
prototype_distribution = [prototypes_per_class] * nclasses
|
||||
with torch.no_grad():
|
||||
if not prototype_distribution:
|
||||
num_classes = torch.unique(y_train).shape[0]
|
||||
self.prototype_distribution = torch.tensor(
|
||||
[self.prototypes_per_class] * num_classes)
|
||||
else:
|
||||
self.prototype_distribution = torch.tensor(
|
||||
prototype_distribution)
|
||||
self.prototype_distribution = torch.tensor(prototype_distribution)
|
||||
|
||||
self.prototype_initializer = get_initializer(prototype_initializer)
|
||||
prototypes, prototype_labels = self.prototype_initializer(
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_distribution=self.prototype_distribution)
|
||||
|
||||
# Register module parameters
|
||||
self.prototypes = torch.nn.Parameter(prototypes)
|
||||
self.prototype_labels = prototype_labels
|
||||
|
||||
|
@ -16,19 +16,19 @@ class TestPrototypes(unittest.TestCase):
|
||||
self.y = torch.tensor([0, 0, 1, 1])
|
||||
self.gen = torch.manual_seed(42)
|
||||
|
||||
def test_addprototypes1d_init_without_input_dim(self):
|
||||
def test_prototypes1d_init_without_input_dim(self):
|
||||
with self.assertRaises(NameError):
|
||||
_ = prototypes.AddPrototypes1D(nclasses=1)
|
||||
_ = prototypes.Prototypes1D(nclasses=1)
|
||||
|
||||
def test_addprototypes1d_init_without_nclasses(self):
|
||||
def test_prototypes1d_init_without_nclasses(self):
|
||||
with self.assertRaises(NameError):
|
||||
_ = prototypes.AddPrototypes1D(input_dim=1)
|
||||
_ = prototypes.Prototypes1D(input_dim=1)
|
||||
|
||||
def test_addprototypes1d_init_without_pdist(self):
|
||||
p1 = prototypes.AddPrototypes1D(input_dim=6,
|
||||
nclasses=2,
|
||||
prototypes_per_class=4,
|
||||
prototype_initializer='ones')
|
||||
def test_prototypes1d_init_without_pdist(self):
|
||||
p1 = prototypes.Prototypes1D(input_dim=6,
|
||||
nclasses=2,
|
||||
prototypes_per_class=4,
|
||||
prototype_initializer='ones')
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.ones(8, 6)
|
||||
@ -37,11 +37,11 @@ class TestPrototypes(unittest.TestCase):
|
||||
decimal=5)
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_addprototypes1d_init_without_data(self):
|
||||
def test_prototypes1d_init_without_data(self):
|
||||
pdist = [2, 2]
|
||||
p1 = prototypes.AddPrototypes1D(input_dim=3,
|
||||
prototype_distribution=pdist,
|
||||
prototype_initializer='zeros')
|
||||
p1 = prototypes.Prototypes1D(input_dim=3,
|
||||
prototype_distribution=pdist,
|
||||
prototype_initializer='zeros')
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.zeros(4, 3)
|
||||
@ -50,23 +50,20 @@ class TestPrototypes(unittest.TestCase):
|
||||
decimal=5)
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
# def test_addprototypes1d_init_torch_pdist(self):
|
||||
# pdist = torch.tensor([2, 2])
|
||||
# p1 = prototypes.AddPrototypes1D(input_dim=3,
|
||||
# prototype_distribution=pdist,
|
||||
# prototype_initializer='zeros')
|
||||
# protos = p1.prototypes
|
||||
# actual = protos.detach().numpy()
|
||||
# desired = torch.zeros(4, 3)
|
||||
# mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
# desired,
|
||||
# decimal=5)
|
||||
# self.assertIsNone(mismatch)
|
||||
def test_prototypes1d_proto_init_without_data(self):
|
||||
with self.assertWarns(Warning):
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=3,
|
||||
nclasses=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=None)
|
||||
|
||||
def test_addprototypes1d_init_with_ppc(self):
|
||||
p1 = prototypes.AddPrototypes1D(data=[self.x, self.y],
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer='zeros')
|
||||
def test_prototypes1d_init_torch_pdist(self):
|
||||
pdist = torch.tensor([2, 2])
|
||||
p1 = prototypes.Prototypes1D(input_dim=3,
|
||||
prototype_distribution=pdist,
|
||||
prototype_initializer='zeros')
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.zeros(4, 3)
|
||||
@ -75,10 +72,68 @@ class TestPrototypes(unittest.TestCase):
|
||||
decimal=5)
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_addprototypes1d_init_with_pdist(self):
|
||||
p1 = prototypes.AddPrototypes1D(data=[self.x, self.y],
|
||||
prototype_distribution=[6, 9],
|
||||
prototype_initializer='zeros')
|
||||
def test_prototypes1d_init_without_inputdim_with_data(self):
|
||||
_ = prototypes.Prototypes1D(nclasses=1,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=[[[1.]], [1]])
|
||||
|
||||
def test_prototypes1d_init_with_int_data(self):
|
||||
_ = prototypes.Prototypes1D(nclasses=1,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=[[[1]], [1]])
|
||||
|
||||
def test_prototypes1d_init_with_int_dtype(self):
|
||||
with self.assertRaises(RuntimeError):
|
||||
_ = prototypes.Prototypes1D(
|
||||
nclasses=1,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=[[[1]], [1]],
|
||||
dtype=torch.int32)
|
||||
|
||||
def test_prototypes1d_inputndim_with_data(self):
|
||||
with self.assertRaises(AssertionError):
|
||||
_ = prototypes.Prototypes1D(input_dim=1,
|
||||
nclasses=1,
|
||||
prototypes_per_class=1,
|
||||
data=[[1.], [1]])
|
||||
|
||||
def test_prototypes1d_inputdim_with_data(self):
|
||||
with self.assertRaises(AssertionError):
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=2,
|
||||
nclasses=1,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=[[[1.]], [1]])
|
||||
|
||||
def test_prototypes1d_nclasses_with_data(self):
|
||||
with self.assertRaises(AssertionError):
|
||||
_ = prototypes.Prototypes1D(
|
||||
input_dim=1,
|
||||
nclasses=1,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer='stratified_mean',
|
||||
data=[[[1.], [2.]], [1, 2]])
|
||||
|
||||
def test_prototypes1d_init_with_ppc(self):
|
||||
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer='zeros')
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.zeros(4, 3)
|
||||
mismatch = np.testing.assert_array_almost_equal(actual,
|
||||
desired,
|
||||
decimal=5)
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_prototypes1d_init_with_pdist(self):
|
||||
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
|
||||
prototype_distribution=[6, 9],
|
||||
prototype_initializer='zeros')
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.zeros(15, 3)
|
||||
@ -87,14 +142,14 @@ class TestPrototypes(unittest.TestCase):
|
||||
decimal=5)
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_addprototypes1d_func_initializer(self):
|
||||
def test_prototypes1d_func_initializer(self):
|
||||
def my_initializer(*args, **kwargs):
|
||||
return torch.full((2, 99), 99), torch.tensor([0, 1])
|
||||
|
||||
p1 = prototypes.AddPrototypes1D(input_dim=99,
|
||||
nclasses=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer=my_initializer)
|
||||
p1 = prototypes.Prototypes1D(input_dim=99,
|
||||
nclasses=2,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer=my_initializer)
|
||||
protos = p1.prototypes
|
||||
actual = protos.detach().numpy()
|
||||
desired = 99 * torch.ones(2, 99)
|
||||
@ -103,8 +158,8 @@ class TestPrototypes(unittest.TestCase):
|
||||
decimal=5)
|
||||
self.assertIsNone(mismatch)
|
||||
|
||||
def test_addprototypes1d_forward(self):
|
||||
p1 = prototypes.AddPrototypes1D(data=[self.x, self.y])
|
||||
def test_prototypes1d_forward(self):
|
||||
p1 = prototypes.Prototypes1D(data=[self.x, self.y])
|
||||
protos, _ = p1()
|
||||
actual = protos.detach().numpy()
|
||||
desired = torch.ones(2, 3)
|
||||
|
Loading…
Reference in New Issue
Block a user