Add small API changes and more test cases

This commit is contained in:
blackfly
2020-04-11 14:28:22 +02:00
parent da3b0cc262
commit 1ec7bd261b
3 changed files with 144 additions and 55 deletions

View File

@@ -1,23 +1,30 @@
"""ProtoTorch prototype modules."""
import warnings
import torch
from prototorch.functions.initializers import get_initializer
class AddPrototypes1D(torch.nn.Module):
class Prototypes1D(torch.nn.Module):
def __init__(self,
prototypes_per_class=1,
prototype_distribution=None,
prototype_initializer='ones',
data=None,
dtype=torch.float32,
**kwargs):
# Accept PyTorch tensors, but convert to python lists before processing
if torch.is_tensor(prototype_distribution):
prototype_distribution = prototype_distribution.tolist()
if data is None:
if 'input_dim' not in kwargs:
raise NameError('`input_dim` required if '
'no `data` is provided.')
if prototype_distribution is not None:
if prototype_distribution:
nclasses = sum(prototype_distribution)
else:
if 'nclasses' not in kwargs:
@@ -26,30 +33,46 @@ class AddPrototypes1D(torch.nn.Module):
'provided.')
nclasses = kwargs.pop('nclasses')
input_dim = kwargs.pop('input_dim')
# input_shape = (input_dim, )
if prototype_initializer in [
'stratified_mean', 'stratified_random'
]:
warnings.warn(
f'`prototype_initializer`: `{prototype_initializer}` '
'requires `data`, but `data` is not provided. '
'Using randomly generated data instead.')
x_train = torch.rand(nclasses, input_dim)
y_train = torch.arange(nclasses)
data = [x_train, y_train]
else:
x_train, y_train = data
x_train = torch.as_tensor(x_train)
y_train = torch.as_tensor(y_train)
x_train, y_train = data
x_train = torch.as_tensor(x_train).type(dtype)
y_train = torch.as_tensor(y_train).type(dtype)
nclasses = torch.unique(y_train).shape[0]
assert x_train.ndim == 2
# Verify input dimension if `input_dim` is provided
if 'input_dim' in kwargs:
assert kwargs.pop('input_dim') == x_train.shape[1]
# Verify the number of classes if `nclasses` is provided
if 'nclasses' in kwargs:
assert nclasses == kwargs.pop('nclasses')
super().__init__(**kwargs)
self.prototypes_per_class = prototypes_per_class
if not prototype_distribution:
prototype_distribution = [prototypes_per_class] * nclasses
with torch.no_grad():
if not prototype_distribution:
num_classes = torch.unique(y_train).shape[0]
self.prototype_distribution = torch.tensor(
[self.prototypes_per_class] * num_classes)
else:
self.prototype_distribution = torch.tensor(
prototype_distribution)
self.prototype_distribution = torch.tensor(prototype_distribution)
self.prototype_initializer = get_initializer(prototype_initializer)
prototypes, prototype_labels = self.prototype_initializer(
x_train,
y_train,
prototype_distribution=self.prototype_distribution)
# Register module parameters
self.prototypes = torch.nn.Parameter(prototypes)
self.prototype_labels = prototype_labels