prototorch/examples/glvq_iris.py

122 lines
3.6 KiB
Python
Raw Normal View History

"""ProtoTorch GLVQ example using 2D Iris data."""
import numpy as np
import torch
from matplotlib import pyplot as plt
2021-06-16 11:46:09 +00:00
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from torchinfo import summary
from prototorch.components import LabeledComponents, StratifiedMeanInitializer
2021-03-26 15:06:11 +00:00
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import euclidean_distance
from prototorch.modules.losses import GLVQLoss
# Prepare and preprocess the data
scaler = StandardScaler()
2020-07-30 09:19:02 +00:00
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
scaler.fit(x_train)
x_train = scaler.transform(x_train)
# Define the GLVQ model
class Model(torch.nn.Module):
2020-09-24 09:54:18 +00:00
def __init__(self):
"""GLVQ model for training on 2D Iris data."""
super().__init__()
prototype_initializer = StratifiedMeanInitializer([x_train, y_train])
prototype_distribution = {"num_classes": 3, "prototypes_per_class": 3}
self.proto_layer = LabeledComponents(
prototype_distribution,
prototype_initializer,
2021-04-23 15:24:53 +00:00
)
def forward(self, x):
prototypes, prototype_labels = self.proto_layer()
distances = euclidean_distance(x, prototypes)
return distances, prototype_labels
# Build the GLVQ model
model = Model()
2021-03-01 17:52:54 +00:00
# Print summary using torchinfo (might be buggy/incorrect)
print(summary(model))
# Optimize using SGD optimizer from `torch.optim`
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
2021-03-01 17:52:54 +00:00
criterion = GLVQLoss(squashing="sigmoid_beta", beta=10)
2020-04-14 17:57:19 +00:00
x_in = torch.Tensor(x_train)
y_in = torch.Tensor(y_train)
# Training loop
TITLE = "Prototype Visualization"
fig = plt.figure(TITLE)
for epoch in range(70):
2020-04-14 17:57:19 +00:00
# Compute loss
distances, prototype_labels = model(x_in)
loss = criterion([distances, prototype_labels], y_in)
# Compute Accuracy
2021-03-26 15:06:11 +00:00
with torch.no_grad():
predictions = wtac(distances, prototype_labels)
correct = predictions.eq(y_in.view_as(predictions)).sum().item()
2021-04-23 15:24:53 +00:00
acc = 100.0 * correct / len(x_train)
2021-04-23 15:24:53 +00:00
print(
f"Epoch: {epoch + 1:03d} Loss: {loss.item():05.02f} Acc: {acc:05.02f}%"
)
# Optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Get the prototypes form the model
prototypes = model.proto_layer.components.numpy()
if np.isnan(np.sum(prototypes)):
2021-03-01 17:52:54 +00:00
print("Stopping training because of `nan` in prototypes.")
2020-09-23 13:29:26 +00:00
break
# Visualize the data and the prototypes
ax = fig.gca()
ax.cla()
ax.set_title(TITLE)
2021-03-01 17:52:54 +00:00
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
cmap = "viridis"
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
2021-04-23 15:24:53 +00:00
ax.scatter(
prototypes[:, 0],
prototypes[:, 1],
c=prototype_labels,
2021-04-23 15:24:53 +00:00
cmap=cmap,
edgecolor="k",
marker="D",
s=50,
)
# Paint decision regions
x = np.vstack((x_train, prototypes))
2020-04-14 17:57:19 +00:00
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
2020-04-14 17:57:19 +00:00
torch_input = torch.Tensor(mesh_input)
d = model(torch_input)[0]
2020-08-04 09:30:50 +00:00
w_indices = torch.argmin(d, dim=1)
y_pred = torch.index_select(prototype_labels, 0, w_indices)
y_pred = y_pred.reshape(xx.shape)
# Plot voronoi regions
ax.contourf(xx, yy, y_pred, cmap=cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
2020-04-14 17:57:19 +00:00
plt.pause(0.1)