prototorch/tests/test_modules.py

197 lines
7.7 KiB
Python
Raw Normal View History

2020-04-06 14:36:43 +00:00
"""ProtoTorch modules test suite."""
import unittest
import numpy as np
import torch
from prototorch.modules import prototypes, losses
class TestPrototypes(unittest.TestCase):
def setUp(self):
self.x = torch.tensor(
[[0, -1, -2], [10, 11, 12], [0, 0, 0], [2, 2, 2]],
dtype=torch.float32)
self.y = torch.tensor([0, 0, 1, 1])
self.gen = torch.manual_seed(42)
def test_prototypes1d_init_without_input_dim(self):
2020-04-06 14:36:43 +00:00
with self.assertRaises(NameError):
_ = prototypes.Prototypes1D(nclasses=1)
2020-04-06 14:36:43 +00:00
def test_prototypes1d_init_without_nclasses(self):
2020-04-06 14:36:43 +00:00
with self.assertRaises(NameError):
_ = prototypes.Prototypes1D(input_dim=1)
2020-04-06 14:36:43 +00:00
def test_prototypes1d_init_without_pdist(self):
p1 = prototypes.Prototypes1D(input_dim=6,
nclasses=2,
prototypes_per_class=4,
prototype_initializer='ones')
2020-04-06 14:36:43 +00:00
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.ones(8, 6)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_init_without_data(self):
2020-04-06 14:36:43 +00:00
pdist = [2, 2]
p1 = prototypes.Prototypes1D(input_dim=3,
prototype_distribution=pdist,
prototype_initializer='zeros')
2020-04-06 14:36:43 +00:00
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_proto_init_without_data(self):
with self.assertWarns(Warning):
_ = prototypes.Prototypes1D(
input_dim=3,
nclasses=2,
prototypes_per_class=1,
prototype_initializer='stratified_mean',
data=None)
def test_prototypes1d_init_torch_pdist(self):
pdist = torch.tensor([2, 2])
p1 = prototypes.Prototypes1D(input_dim=3,
prototype_distribution=pdist,
prototype_initializer='zeros')
2020-04-06 14:36:43 +00:00
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_init_without_inputdim_with_data(self):
_ = prototypes.Prototypes1D(nclasses=1,
prototypes_per_class=1,
prototype_initializer='stratified_mean',
data=[[[1.]], [1]])
def test_prototypes1d_init_with_int_data(self):
_ = prototypes.Prototypes1D(nclasses=1,
prototypes_per_class=1,
prototype_initializer='stratified_mean',
data=[[[1]], [1]])
def test_prototypes1d_init_with_int_dtype(self):
with self.assertRaises(RuntimeError):
_ = prototypes.Prototypes1D(
nclasses=1,
prototypes_per_class=1,
prototype_initializer='stratified_mean',
data=[[[1]], [1]],
dtype=torch.int32)
def test_prototypes1d_inputndim_with_data(self):
with self.assertRaises(AssertionError):
_ = prototypes.Prototypes1D(input_dim=1,
nclasses=1,
prototypes_per_class=1,
data=[[1.], [1]])
def test_prototypes1d_inputdim_with_data(self):
with self.assertRaises(AssertionError):
_ = prototypes.Prototypes1D(
input_dim=2,
nclasses=1,
prototypes_per_class=1,
prototype_initializer='stratified_mean',
data=[[[1.]], [1]])
def test_prototypes1d_nclasses_with_data(self):
with self.assertRaises(AssertionError):
_ = prototypes.Prototypes1D(
input_dim=1,
nclasses=1,
prototypes_per_class=1,
prototype_initializer='stratified_mean',
data=[[[1.], [2.]], [1, 2]])
def test_prototypes1d_init_with_ppc(self):
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
prototypes_per_class=2,
prototype_initializer='zeros')
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(4, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_init_with_pdist(self):
p1 = prototypes.Prototypes1D(data=[self.x, self.y],
prototype_distribution=[6, 9],
prototype_initializer='zeros')
2020-04-06 14:36:43 +00:00
protos = p1.prototypes
actual = protos.detach().numpy()
desired = torch.zeros(15, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_func_initializer(self):
2020-04-06 14:36:43 +00:00
def my_initializer(*args, **kwargs):
return torch.full((2, 99), 99), torch.tensor([0, 1])
p1 = prototypes.Prototypes1D(input_dim=99,
nclasses=2,
prototypes_per_class=1,
prototype_initializer=my_initializer)
2020-04-06 14:36:43 +00:00
protos = p1.prototypes
actual = protos.detach().numpy()
desired = 99 * torch.ones(2, 99)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def test_prototypes1d_forward(self):
p1 = prototypes.Prototypes1D(data=[self.x, self.y])
2020-04-06 14:36:43 +00:00
protos, _ = p1()
actual = protos.detach().numpy()
desired = torch.ones(2, 3)
mismatch = np.testing.assert_array_almost_equal(actual,
desired,
decimal=5)
self.assertIsNone(mismatch)
def tearDown(self):
del self.x, self.y, self.gen
_ = torch.seed()
class TestLosses(unittest.TestCase):
def setUp(self):
pass
def test_glvqloss_init(self):
2020-04-08 20:47:08 +00:00
_ = losses.GLVQLoss(0, 'swish_beta', beta=20)
def test_glvqloss_forward(self):
criterion = losses.GLVQLoss(margin=0,
squashing='sigmoid_beta',
beta=100)
d = torch.stack([torch.ones(100), torch.zeros(100)], dim=1)
labels = torch.tensor([0, 1])
targets = torch.ones(100)
outputs = [d, labels]
loss = criterion(outputs, targets)
loss_value = loss.item()
self.assertAlmostEqual(loss_value, 0.0)
2020-04-06 14:36:43 +00:00
def tearDown(self):
pass